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Abstraet--Iteat transfer from a rotating circular cylinder immersed in a spatially uniform, time-dependent 
convective environment is investigated numerically including the effects due to buoyancy force. The flow 
equations, based on the vorticity and stream function, are solved along with the energy equation by a 
hybrid spectral scheme that combines the Fourier spectral method in the angular direction and a spectral 
element method in the radial direction. Several cases are simulated for Grashof numbers up to 2 × 10 4, 
Reynolds n umbers up to 200, and a range of speed of rotation from -0.5 to + 0.5. The results show that 
vortex shedding is promoted by the cylinder rotation but is vanished by the presence of the buoyancy force. 
In opposing flows, the counter flow currents cause a large expansion of the streamlines and isotherms in 
the directicn normal to the free stream velocity. These changes in the structure of the flow and the 
temperature fields greatly modify the heat flux along the surface of the cylinder and consequently, the heat 
transfer rate is strongly dependent upon Reynolds number, Grashof number, rotational speed, and the 
gravity direction. Effects due to flow pulsation are also reflected in the Nusselt number history in the form 

of periodic oscillations. 

1. INTRODUCTION 

Heat transfer and fluid flow associated with a cir- 
cular cylinder has been, for several decades, a subject 
of great attention among applied mathematicians, 
fluid dynamicists and heat transfer analysts owing 
to its numerous engineering applications such as the 
cooling of electronic components, the cooling of hot 
wire anemometers and the lift enhancement as 
attributed to Magnus effects. It is of great theoretical 
interest as being a prototypical model for studying 
important aspects of unsteady flow separation where 
several fundamental questions remain open. 

The literature on convection about a cylinder in an 
unbounded medium is rich [1]. However, it is not our 
objective to make this survey exhaustive but to briefly 
review some of the relevant work in this area. For a 
circular cylinder suspended in a uniform flow environ- 
ment, both hydrodynamics and heat transfer have 
been well addres:~ed by several researchers. Dennis 
and his co-workers [2] solved the steady problem for 
Reynolds numbers less than 40 using a semi-analytical 
method which cembines Fourier analysis and finite 
differences in the angular and radial directions, respec- 
tively. Jain and Goel [3] and Karniadakis et al. [4] 
independently eraployed different formalisms and 
numerical approaches, vorticity-stream function vs 
primitive variables and finite differences vs spectral 
elements, to obtain results for Reynolds numbers up 
to 200 in an effort to investigate the heat transfer 
in the unsteady flow wake regime. Unlike the three 
aforementioned :~tudies where the fluid motion is 

driven by an external force, Qureshi and Ahmad [5] 
considered the case in which convective currents are 
generated by buoyancy for Rayleigh numbers ranging 
from 10 -2 to 107 by numerically integrating the equa- 
tions via the SIMPLE algorithm. A conjugate prob- 
lem of this kind was later treated by Kimura and Pop 
[6]. Both types of problems discussed thus far are 
nothing more than the extreme limits of a more gen- 
eral situation in which forced and free, that is, com- 
bined convection take place simultaneously. Jain and 
Lohar [7] and Badr [8] have, respectively, examined 
the problem in which the gravity was assumed to be 
parallel and perpendicular to the free stream velocity. 
The predicted flow patterns and the temperature fields 
reported in these two studies are remarkably different 
and the corresponding heat transfer rates show a 
strong dependence on the gravity direction. In a recent 
study, Ahmad and Qureshi [9] presented a unified 
formulation of the mixed convection problem which 
is applicable for arbitrary angle between the forced 
flow direction and gravity. 

Despite a large number of solutions reported on a 
cylinder subjected to a uniform cross flow, very few 
were able to produce a non-symmetrical wake which 
occurs at Reynolds numbers above about 40, at the 
rear of the cylinder. Such a controversy has led many 
researchers to speculate that the phenomena is trig- 
gered by some sort of perturbation mechanism, the 
truncation error for example, rather than a hidden 
nature of the Navier-Stokes equations. Due to this 
difficulty, attempts have been made to excite the asym- 
metrical eddy in an attempt to study the flow 
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NOMENCLATURE 

f~, Fn sine and cosine components of the 7 
stream function, respectively 6 

g gravity acceleration 
g,, G, sine and cosine components of the At 

vorticity, respectively 0 
Gr Grashof number ® 
h,, H, sine and cosine components of the v 

temperature, respectively p 
N number of Fourier modes q~ 
N e number of nodes in element e 
N u  Nusselt number 
Pr Prandtl number a~ 
r radial coordinate f~f 
R cylinder radius 
Re Reynolds number 
t time 
u dimensionless velocity vector 
U~ mean of the free stream velocity. 

Greek symbols 
thermal diffusivity 

fl thermal expansion coefficient 

speed of rotation 
angle between free stream velocity and 
gravity 
time increment 
angular coordinate 
temperature 
kinematic viscosity 
fluid density 
amplitude of oscillation, see equation 
(5b) 
stream function 
vorticity 
Strouhal number. 

Subscripts 
w pertains to wall conditions 
oo pertains to free stream conditions 
0 pertains to initial conditions. 

Superscripts 
k time level index. 

behaviors in the wake. Pate1 [10] imposed a small 
disturbance by slowly rotating the cylinder for a short 
period of time and was able to generate avon Karman 
vortex street. Similar studies were also conducted by 
Badr et al. [11, 12], Ingham and Tang [13] and Tang 
and Ingham [14]. Forced convection heat transfer in 
this setting was analyzed by Badr and Dennis [15]. 

In spite of the fact that much understanding has 
been gained from the previous studies, our knowledge 
of convective phenomena about a cylinder is rather 
incomplete in the sense that answers to several 
questions are still lacking. Two of  those questions 
including the effects of the buoyancy force on the heat 
transfer process under vortex shedding conditions 
and the response of the Nusselt number when the cylinder 
is exposed to turbulent flows where a large part of the 
unsteadiness arises from turbulent velocity fluctua- 
tions will be addressed in this study. In what follows 
we shall provide a detailed description of the 
problem followed by a mathematical model, based on 
the stream function-vorticity formulation, that 
governs the transport processes and an outline of the 
numerical methods for solving the equations, and 
finally results are presented to illustrate important 
features of the coupled fluid flow and heat transfer. 
Though a technical difficulty associated with the speci- 
fication of the vorticity boundary conditions has long 
been acknowledged, an exact treatment will be used 
in this study to alleviate this difficulty in the hope of 
resolving the controversy about the existence of an 
asymmetrical wake behind a cylinder in uniform 
flows. 

2. FORMULATION 

2.1. Problem s ta tement  

The physical system to be considered is shown in 
Fig. 1 consisting of a circular cylinder of radius R 
exposed to an environment of infinite extent where 
the free stream velocity makes an angle 6 with the 
gravitational acceleration vector. Initially, the fluid 
and the cylinder are at rest and both are at tem- 
perature ®0. Suddenly, the fluid acquires, in an impul- 
sively started fashion, a uniform flow velocity which 
also has a small oscillation superimposed on it as 
described by U~o[1 + ~bsin(2n~ft)] with f~f and ~b being 
the Strouhal number and amplitude, respectively. 
Simultaneously, the cylinder instantaneously attains 
its rotational speed ~ assuming that a positive value 
corresponds to counter-clockwise rotation and vice 
versa. In the same way, the temperature within the 
cylinder is raised to ®w, presumably higher than {90, 
and remains so throughout the course of the simu- 
lation. As the cylinder and the fluid are in contact, 

O0 
U.[I+ ~Bmt2~aiO ] 

4 
1~ lit 

Fig. 1. Schematic of the physical system. 
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heat flow from the cylinder to the surrounding fluid 
creates a density variation which, in turn, gives rise to 
an additional mode of convective transport controlled 
by the buoyancy force. Whether or not the effects of 
free convection have profound influence is entirely 
dictated by the magnitude of the ratio of the Grashof 
number to the square of the Reynolds number and by 
the gravity direction. Depending on the orientation of 
the free stream velocity and the gravity, this direc- 
tional dependence may lead to an enhancement or a 
degradation of heat transfer. 

In principle, the time evolution of this mixed con- 
vection problem can be predicted by solving a system 
of equations derived from the well-known con- 
servation law of mass, momentum, and energy. How- 
ever, the inherent nonlinearities often make these 
equations intractable even with our latest advances in 
digital computers. In view of this, we shall simplify 
the problem using the following assumptions : (i) the 
Oberbeck-Boussinesq equations are valid implying 
that the fluid properties are constant except density in 
the body force term where it varies as a linear function 
of temperature, (ii) the length of the cylinder is much 
greater than its diameter so that end effects can safely 
be neglected and 'Lhe transport processes become two- 
dimensional in r and 0 and (iii) effects due to heat 
conduction in the cylinder interior are unimportant. 

2.2. Model equations 
Under the foregoing assumptions, the vorticity 

transport equation, the Poisson equation for the 
stream function, and the energy equation constitute a 
complete set of equations necessary for predicting the 
evolution of the convective phenomena described 
above. In dimensionless form, these equations are 
expressed as 

0o9 1 2 
o~ - ; J(O, o9) = ~ v~o9 

Gr cos (0+6) sin (0+6) 
2Re 2 r ~ (1) 

V~O = o9 (2) 

O 0  1 2 
0-7 -- ;J(O, O) = R~bTr V20 (3) 

where V 2 is the Laplacian in cylindrical coordinates, 
and J(~O,®) is the Jacobian. In these equations, the 
stream function $ has been made dimensionless by 
RUoo, the vorticity o9 by Uoo/R, the time t by R/Uoo, 
the radial coordinate r by the cylinder radius R. The 
dimensionless groups Gr, Pr and Re, defined as 
89fl(O w -  O0)R3/v 2, v/o~ and 2RUoo/V, respectively, are 
known as the Grashof, Prandtl and Reynolds 
numbers. The sl:ream function introduced above is 
related to the velocity by 

e~ o0 a~ 
u = r ~ - -eo  O~-" (4) 

The initial and boundary conditions to be imposed 
to equations (1)-(3) are the following : 

0q, 
~O=0 0 r = - 7  O = 1  at r = l  (5a) 

~O=[l+dpsin(2n~ft)]rsinO ® = 0  at r ~ o o ,  

(5b) 

and 

o 9 = 0  O = 0  at t = 0 .  (5c) 

In the next section, a hybrid spectral method is used 
in conjunction with a mixed time integration scheme 
to derive the discrete analogues of equations (1)-(3). 
One novel feature of the present solution technique is 
the use of the influence matrix technique to resolve 
the complications created by the lack of vorticity 
boundary conditions. 

3. METHODS OF SOLUTION 

3.1. Temporal discretization 
Numerous explicit and implicit techniques exist for 

integrating the vorticity and the energy transport 
equations. Of particular interest in the present work 
is the semi-implicit scheme resulting from integration 
of the convective and diffusion terms by the Adams- 
Bashforth and the backward Euler methods, respec- 
tively. Upon applying these discretizations, there 
results a system of three linear, one-way coupled 
partial differential equations, 

[ ~ t t  __V21(.ok+ 1 =~-tRe o9k 

+ ~ [3j@,~, o9~) _ j(~Ok- 1, ogk-1 )] 

Gr [- dO k + l 
4-ReL c°s(O+6) Or sin(0+6)r ook+~]-ffO j (6) 

V2~,+1 = o9k+l (7) 

RePr 2 7 k+ RePro~ 
~-A~--V J® 1 =  2At 

RePr k k k -Jt----~-F [3J(I// ,O )-J(I / /  - ' ,Ok-1)]  (8) 

which are first-order accurate in time. Here, the super- 
script k represents the time level, and At denotes the 
time increment. 

3.2. Spatial discretization 
In the past, several researchers have obtained solu- 

tions for flow and heat transfer associated with a cylin- 
der by means of a numerical scheme that utilizes the 
Fourier spectral method in the angular direction and 
a finite difference method in the radial direction. 
Unfortunately, the truncation errors in finite differ- 
ence methods, as well as finite element methods, decay 
rather slowly and therefore the use of  a partial spectral 
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algorithm would degrade the accuracy of the spectral 
methods. In order to preserve their accuracy, we shall 
ultilize a spectral method that combines Fourier spec- 
tral and spectral element methods. 

3.2.1. Fourier-spectral element method. Following 
Badr [8], the stream function, vorticity, and the tem- 
perature are represented by Fourier expansions of the 
form : 

fF0(r)  
~O(r '0)  ~ 1 ~Go(r) ~ 

L O ( r , O ) J  L H o ( r ) )  

+,-~l ~ G,(r) cos (nO)+ ~ g , ( r ) ~  sin (nO) (9) 

LH,(r)  Lh, (r )  J 

where {f,}, {F,}, {g,}, {G,}, {h,} and {H,} are six 
sets of unknown functions to be determined and N 
is the number of Fourier modes. Substituting these 
expressions into equations (6) and (8) and equating 
terms having a common factor in sin (nO) and cos (nO) 
yields equations for the expansion coefficients, 

d / dG~+l\ [ - / R e \  n2q k+l 

- ) + i t s ) ' +  r ?  

f Re ~ ~k B~k + Re k 
= t ~ t ) r o , - -  tr,  I + T [ 3 S G , - - S G ~ , - 1  ] (10) 

d f dg~+l\ [ - / 'Re \  . n2q ~ - -  +1 

-- m ° - B g .  ' + T [ 3 s g ° - s ~ -  ] ( l l )  

d / dH~+~ [-{RePr\  n2-1 k+~ 
- t,r ) r ] ' - ' .  

f R e P r \  k RePr k k 1 
= t ~ t - ) r H . + - - ~ [ 3 S H . - S H . -  ] (12) 

d / dh~+l\ l - / R e P r \  n 2-] ~+l 
J+l_tTxrJr+r] h" 

{ R e P r \  k RePr k k 1 
= J ( 1 3 )  

where the convection terms are given in the Appendix. 
Similar procedures can be applied to equation (7) 

to yield equations for the stream function com- 
ponents. The results are 

d / dF~ + 1 \ n 2 
d r r ( r ~ )  + -Fk+ l  = - "  (14)  

d / d f k + l \  
-drirS~--r ) +n~ fk+l = (15) 

which can be solved once the vorticity components 

are known ; thereby allowing the convection terms to 
be evaluated. 

To complete the discretization process, a Galerkin- 
based spectral element method is applied to convert 
the above equations to their discrete equivalence. 
Because the method has been described at length in the 
literature (see Nguyen et al. [16]), details are omitted. 

3.2.2. Influence matrix technique. As noted earlier, 
there is a technical difficulty associated with the over- 
specification and underspecification of the stream 
function and the vorticity boundary conditions, 
respectively. One way to circumvent this problem 
is to decompose each pair of {F,k+~,G, ~+l} and 
{fk+~,#,~+l} as a linear combination of solutions of 
auxiliary problems such that the overall solution satis- 
fies both the differential equations as well as the 
boundary conditions. For the {F, k+l, G, k+ 1} pair the 
solution is sought in the form 

(16) 

where gz and ~'~1 a r e  the solutions of the following 
problems : 

Re 

-dr-) 
d f d g l \  n 2 

= -r l 

with 

n l ( 0 ) = l  f~l(OO)=0 

.and ~ 1 ( 0 ) = 0  g l ( o o ) = 0 .  

(17) 

and 

Re 
- d ( r d ~ ° ) + I ( ~ ) r + ~ l ~ ° d r  \ dr ] 

= ~ t t  r G , - B G ,  + T [ 3 S G . - - S G ,  ] 

d { r d g o ) + n 2  
- drr \ ~-r  ) - r -g°  = -rf~o,  

with 

f~0(0) = 0 tao(~)  = 0 

.and g0(0) = 0 g0 (D)  = 0. 

(18) 

The constant 2 is determined from the no-slip con- 
dition that leads to 

1 
( -2760 , -dg0/dr [ ,= l ) .  (19) 

Z - dgel/drlr= i 

Likewise, the pair of solutions {f~+l,gnk+l} can be 
constructed in the manner described above except that 
7 = 0 for all n and g0(oo) = [1 + ~b sin (2nfld)]r~o for 
n = 1 and 0 otherwise. 
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4. RESULTS AND DISCUSSION 

The contents of this section are organized into four 
parts: first, several tests for forced and mixed con- 
vection are performed to check the validity of the 
numerical algorithm developed earlier by comparing 
our predicted results against previously published 
solutions. Second, a special case for Re = 200 without 
cylinder rotation and free-stream fluctuation is simu- 
lated to see whether or not an asymmetric wake and/or 
vortex shedding occurs. Third, a parametric study is 
conducted to illustrate the behaviors of the flow and 
temperature fields with Gr, y, Re and 6 varying one at 
a time. Finally, we shall concentrate our efforts on 
interpreting the :results, particularly the local and 
overall Nusselt numbers, so as to enhance our under- 
standing of the thermal process under these 
conditions. 

Listed in Tables 1 and 2 are the steady-state mean 
Nusselt numbers of forced and mixed convection, 
respectively. The values reported therein were deter- 
mined based on the criteria that the change in the 
Nusselt number in 100 time steps is less than 10 -3 or 
equivalently, the time variation of Nusselt number 
between two successive time steps is no greater than 
10 -5 on average. As one can see from Table 1, the 
overall agreement is very good, within a few percent. 
For Re > 40, our results are also in good agreement 
with the correlation 

~ = 0.43 +0.48x/Re 

that has been recommended by McAdams [17] for 
pure forced convection in air. With the effects of free 
convection, our data tend to fall between those pre- 
dicted by Badr 18] and Gebhart et al. [18] at low 
Reynolds and Grashof numbers. As Re and Gr 

increase, howeve]r, our results tend to slightly over- 
predict the Nusselt number. Although the cause for 
this is unclear, it is likely attributed to how well the 
thin thermal layer is resolved. For numerical purposes, 
the computational domain in this study was truncated 
to 100 and was then divided into 25 elements with 
their sizes varies according to the exponential function 
with an exponential factor of 1.7. Within each 
element, five nodes were used and their locations were, 

Table 2. Mixed convection Nusselt numbers with Pr = 0.7, 
7 = 0 a n d 6 = 0  

Re Gr Present Gebhart et al. [18] Badr [8] 

1 4 1.09 1.19 0.96 
5 100 1.89 1.99 1.82 

20 1000 3.13 3.13 2.85 
40 6400 4.59 4.46 4.17 

in terms of their local coordinates ranging from - 1 
to 1, selected to correspond to the Gauss-Lobatto 
quadrature points, i.e. cos (#r/Ne). In this fashion, the 
nodal points are clustered in the vicinity of cylinder; 
hence, providing good spatial resolution to capture 
the transport behavior in the near-wall region. 

Figures 2(a)-(c) depict the flow patterns and the 
temperature and the vorticity fields for the case of 
pure translation, referred to as case A in Table 3, with 
Re = 200. Because the early stage of the development 
is dominated by conduction, the presentation herein 
emphasizes the later periods during which the wake 
grows in an asymmetric fashion as a precursor for the 
eddies to break away from the cylinder surface. As 
noticed from the streamlines in Fig. 2(a) for t = 10, 
asymmetry has already appeared and is in the form of 
two eddies of unequal size. Data for later times, t = 20 
and 30, reveal the growing of the eddies at a different 
pace which slowly erases the symmetry. Though the 
computations were extended to t = 40, no vortex 
shedding was seen and since the Nusselt number has 
already reached its steady-state value, the simulation 
was terminated. This decision was made on the basis 
that excessive computing time may be required before 
such a phenomena, believed to occur at much later 
time, can be observed. One important finding from 
these figures is a confirmation of the asymmetry which 
necessitates a full Fourier expansion as in equation 
(11) rather than just the sine components as some 
researchers had assumed in the past. Figures 3(a)-(c) 
show the development of the pressure, vorticity, and 
Nusselt number as a function of the angle (in radians) 
measured from the back stagnation point in the 

Table 1. Forced convection Nusselt numbers with ~ = 0t 

Pr 
Re 0.73 1 8 

0.5 0.67 (0.66, 0.77) 0.72 (0.72, NA) 1.26 (1.22, NA) 
2 1.03 (1.02, 1.11) 1.12 (1.12, NA) 2.07 (2.06, NA) 

i[0 1.90 (1.90, 1.95) 2.10 (2.09, NA) 4.10 (4.16, NA) 
20 2.53 (2.56, 2.58) 2.83 (2.83, NA) 5.68 (NA, NA) 
40 3.47 (3.48, 3.47) 3.81 (NA, NA) 7.99 (NA, NA) 

100 5.23 (NA, 5.23) 
21)0 7.10 (NA, 7.22) 

i" First and second values in parentheses are from refs. [2] and [17], respectively. 
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Table 3. Summary oE simulation parameters with Pr = 0.73 

C a s e  Re Gr 6 ~ ~b D.f 

A 200 0 0 0 0 0 
B 100 - -  0 0 0.2 1.0 
C 100 l 0 4  0 - -  0.2 1.0 
D - -  104 0 0.2 0.2 1.0 
E 100 104 - -  0.2 0.2 1.0 

counter-clockwise direction. In general, they are all 
symmetric about  the horizontal axis with the pressure 
being relatively low in the wake. It  is worthwhile to 
note that only in the wake is the temporal  development 
significant. 

Shown in Figs. 4(a)-(c) are the three sets of  stream- 
lines and the isotherms corresponding to case B in 
Table 3 at t = 40. Here, the free-stream velocity and 
the gravity vector are perpendicular to each other, 
6 = 0, so that the combined flow is normally referred 
to as a cross flow. In Fig. 4(a), the Grashof  number 
is zero and vortex shedding, evidently triggered by 
the spinning motion of  the cylinder, is seen to occur 
downstream. Such a phenomena results in a dis- 

persion of  warm fluid particles occuring alternately in 
a fashion similar to the von Karman  vortex street. As 
soon as Gr becomes nonzero, an upward motion is 
induced causing a deflection of  the streamlines in the 
wake as seen in Fig. (4b). Further  increase in buoy- 
ancy force makes the rising convective currents strong 
enough to destroy the low pressure wake region; 
thereby preventing the formation of  eddies behind 
the cylinder. Because of  the absence of  eddies, the 
shedding event cannot  take place under the influence 
of  a strong buoyancy force in cross flows. 

Figures 5(a)-(c) illustrate the effects of  rotation on 
the structure of  the flow and temperature fields for 
case C at t = 40. Again, the deflection of  the stream- 
lines and isotherms is apparent and is attributed to 
the buoyancy force which in this case is comparable 
to the free stream velocity, i.e. Gr/Re 2 = 1 [see Fig. 
5(b)]. When the cylinder is set in rotational motion, 
the streamlines and isotherms, especially in the wake, 
are somewhat modified from those of  a stationary 
cylinder. Even though the magnitude of  the angular 
velocity is one-half  of  the free stream velocity, it is the 
direction of  rotation that is held accountable for two 
major dissimilarities. First, when rotation is in the 
clockwise direction the shearing motion tends to 
oppose the buoyancy force;  hence the deflection 

( a )  o . 5 .  t = lO 

o . o -  ~ "  . . . . . . . .  t - - 2 o  

i - 0 . 5 -  / /  ~-  -1 .0  - 
,~ . 

~ - 1 . 5  - 

- 2 . 0 -  

- 2 . 5  • i • | • i • i • | • i - ! • 
0 . 0  0 . 8  1 . 6  2 . 4  3 . 2  4 . 0  4 . 8  5 . 6  6 . 4  

Angular coordinate 

16 (b) 
1 2  

o ~  

0 

- 4 .  

-8 -  

-12"  

-16 
0 . 0  

t =  10  
. . . . . . . . .  ! . - - 2 0  

t = 4 0  

• o18"118 "21," 3'.2" 4to ",'.8 "sl." 6., 
Angular coordinate 

(c> "t . . . . . . . . .  

11 q / ~ t = 4 0  

I I  
2 i - l • i • i - l • i • i - i • 

0.0 0.8 1.s 2.4 3.2 4.o 4.8 s.s 6.4 

Angular coordinate 

Fig. 3. Temporal development of surface quantities for case A : (a) pressure, (b) vorticity and (c) Nusselt 
number. 
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1 2 3 4 5 
0 :  0.1 0.3 0.5 0.7 0.9 

Lllvel 1 2 3 4 5 
0 :  0.1 0.3 0.5 0.7 0.9 

S 
1 2 3 4 

0 :  0.1 0.3 0.5 0.7 

Fig. 4. Effects of Gr on streamlines and temperature contours for case B : (a) Gr = 0, (b) Gr = 5 x 103 and 
(c) Gr = 2 x  104 . 

5 
0.9 

becomes less. Conversely, when the cylinder spins in 
the counter-clockwise direction it adds momentum to 
the buoyancy-induced motion which, in turn, leads 
to higher deflection. Second, the weakening of the 
buoyancy-induced flow caused by cylinder rotation 
creates, behind the cylinder, secondary vortices which 
don't  appear to be detached or shed. 

In Figs. 6(a)-(c), case D, the Grashof number is 
fixed at 10 4 while the Reynolds number varies from 
50 to 150. The trends observed in these figures are 
consistent with those in Figs. 4(a)-(c) where the 
Grashof number was kept constant. That is, a large 
Grashof number to Reynolds number squared ratio 
results in a high deflection of the streamlines and 
isotherms. As this ratio decreases by increasing the 
Reynolds number, the deflections become less and 
the streamlines in the wake deform into an S-shape 
and eventually eddies are developed and are de- 
tached from the surface as seen in Fig. 6(c). 

Figures 7(a)-(c) show the effects due to flow orien- 
tation. In contrast to opposing (6 = n/2) and cross 
(6 = 0) flows, no deflection of the streamlines and the 
isotherms is detected in Fig. 7(b) for aiding (~5 = 3n/2) 

flow. This is because the line of action of buoyancy 
force is oriented parallel to the main flow. Owing to 
the buoyancy force having its direction the same as 
that of the free stream velocity, the combined motion 
has a higher acceleration, thus higher velocity, than 
either of the two alone. Consequently, the temperature 
plume becomes thinner and is lengthened in the 
streamwise direction as displayed in Fig. 7(b). This is 
anticipated since the gain in momentum allows fluid 
particles to be convected downstream further before 
their thermal energy is completely dissipated to the 
surrounding fluid. In Fig. 7(c) the gravity is now act- 
ing in the reverse direction (6 = n/2) ; thus producing 
a resisting buoyant motion. As a result, the flow and 
temperature fields are quite distinct from that seen in 
Figs. 7(a) and (b). Here, the momentum loss resulting 
from flow cancellation leads to an expansion of the 
thermal plume in the direction normal to the free- 
stream velocity. 

In order to quantify the effects of Gr,  R e ,  7 and 6 
on the heat transfer, the local Nusselt number and the 
overall Nusselt number are plotted in Figs. 8(a)-(d) 
and Figs. 9(a)-(d), respectively, for the cases con- 
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(a) ~ ~  
Level 
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1 2 3 4 5 
0.1 0.3 0.5 0.7 0.9 

1 2 3 4 5 
e :  0.1 0.3 0.5 0.7 0.9 

Level 1 2 3 4 5 
6 :  0.1 0.3 0.5 0.7 0.9 

Fig. 5. Effe,:ts of ? on streamlines and temperature contours for case C: (a) ? = -0.5, (b) y = 0 and (c) 
? =0.5. 

sidered in the above parametric study. For cross flows 
and for a given Reynolds number, the total heat trans- 
fer rate increases as the Grashof number increases [see 
Fig. 8(a)]. This enhancement mainly comes from the 
lower half of the cylinder where a pronounced increase 
of heat flux is experienced. Though the heat flux along 
the other half of the cylinder surface is not very sen- 
sitive to the Grashof number, it is interesting to note 
a reduction of the heat flux in the region next to the 
wake. As for the effects due to the cylinder rotation, 
a positive rotation simply shifts the local Nusselt num- 
ber curve to the right whereas a negative rotation 
shifts it to the left. Also observed in Fig. 8(b) is a 
depression or elevation of the Nusselt number curves 
depending on the direction of rotation. If the direction 
is positive, the buoyancy is enhanced and the curve is 
elevated. Nonetheless, the depression or elevation is 
small and the area. under these curves, i.e. the overall 
Nusselt number, therefore differs relatively little at 
least for the range ofv from - 0 . 5  to 0.5 as revealed in 
Fig. 9(b). Figures 8(c) and 9(c) show the heat transfer 

performance under varying Reynolds numbers. In 
general, the local Nusselt number shows higher values 
everywhere along the cylinder surface for higher 
Reynolds numbers except as usual in the wake where 
no definite trend can be discerned. Correspondingly, 
the overall Nusselt number is an increasing function 
of the Reynolds number. Among the parameters con- 
sidered in this study, none appears to produce a more 
dramatic change in the heat transfer rate than the 
gravitational orientation [see Fig. 8(d)]. Once again, 
the increase in the local Nusselt number for the case 
of aiding flow is another evidence of the buoyancy 
enhancement. When the gravity and the free stream 
velocity are cotinear and pointing in the same direc- 
tion (as for the case of opposing flow), the shape of 
the local Nusselt number profile changes drastically. 
Another interesting feature about the effects due to 
gravitational orientation is the transient behavior of 
the Nusselt number history in opposing flows where 
it exhibits a dip and its value at long time seems much 
closer to that for cross flow than one would expect. 
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(a) 

Level I 2 3 4 5 
O: 0.1 0.3 0.5 0.7 0.9 

Level 1 2 3 4 5 
O: 0.1 0.3 0.5 0,7 0.9 

(c) 

I 2 3 4 5 
O: 0.1 0.3 0.5 0.7 0.9 

Fig. 6. Effects of Re on streamlines and temperature contours for case D : (a) Re = 50, (b) Re = 100 and 
(c) Re = 150. 

I 

All Nusselt number history curves presented in Figs. 
9(a)-(d) have one feature in common : an oscillatory 
period preceded by a non-oscillating period. The 
former is a direct consequence of  the oscillations in 
the main flow whereas the latter is a result of  con- 
duction mechanism that is usually dominant  during 
the early stage of  the transport process. 

5. CONCLUDING REMARKS 

Heat  transfer in the presence of  forced convection, 
free convection, body rotation with flow pulsation 
is investigated numerically using a Fourier-spectral 
element method. A parametric study is performed to 
quantify the effects due to the buoyancy force under 

vortex shedding conditions. Conclusions can be sum- 
marized as follows : 

(1) For  pure forced convection up to Re = 200, 
asymmetry of  the wake exists, but vortex shedding 
was not observed for dimensionless time up to 40. 

(2) Augmentat ion of  heat transfer can be 
accomplished by several means including an increase 
in the Grashof  number and/or  Reynolds numbers. 

(3) Depending on the direction of  rotation, a small 
increase or  decrease in the Nusselt number can be 
obtained if the direction is to aid or  oppose the buoy- 
ancy force. 

(4) With regards to the direction of  the gravity, 
Nusselt number  is highest in aiding flow and lowest 
in opposing flow. 
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Level I 2 3 4 5 
I~: 0.1 0.3 0.5 0.7 0.9 

I 2 3 4 5 
0 :  0.1 O~ O~ 0,7 0.9 

I 2 3 4 
0 :  0.05 0.25 0.45 0.65 

Fig. 7. Effects of  6 on streamlines and temperature  contours  for  case E : (a) 6 = 0, (b) 6 = 3n/2 and (c) 
a = 7t/2. 
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APPENDIX 

We here briefly summarize the expressions for the buoy- 
ancy and the convective terms as abbreviated in equations 
(10)-(13). These are 

Gr dh~ 

BG.=~e  cos6 r 6n ,~ - r  + dr ~ - r  ) 

+(n+l)Hn+,-(n-1)Hn ,] 

sin, [r(d , 

(A1) 

dh. l'X q) ~-)+(n+l)h.+, +(n- 1)h._,J~ 

(A2) 

B g . = ~ e  cos6 r + 

+ (n + 1)h,,__~- ( n -  1)h,,_~] 

I (  dHo dHn+, dH._,]  
- s i n 3  r 6.1 dr d ~  + dr ) 

- ( n +  l ) H . + l -  ( n -  1)H._,]} (A3) 

SGo = 2 ~=lm(F,,~r dGm dF,~ dfm\ --f'~-r +g"~r - G ' ~ r  ) 

(A4) 

n ,, dG0 dF0 u~ {dgm 
= + n g . ~ -  + 2., SG. - ~-'-d~-r ar ,.=, d 7  [KFx+(m-n)F~] 

dr [Kf~+Jf~] +mg~ dr J 

df~ . df~ 

Sg, =nF, ~ --nti,- dF°-~r +~2S'_ 1 ~ {~ff'~(KfK-Jfj) 

+ ~ -  [KFK-- (m-n)F~] or 
F d f . .  dfjq FdFK dF, l] 

dr JJ (A6) 

A / dh,. dH.. dF,. d fro\ 
a n  O = 2m~_' 1 m~Frn~-  r - f m d r ' -  r ~ - h m ~ -  F --Hm~'-r ) 

(A7) 
dHo dFo ~ {dh~ 

SH. = - n f . - d 7  +nh. ~r  + L -~7[m~+(m-n)tA 

dH,, dltr dFs] dr [Kfx + Jfs] + mh,, + 

FdfK 
--mHmL~ r +sin(m--n)~--~]} (A8) 

F, N Sh,,=nF.-d--I~--nH,,d~Fr-+ ~=, {~-[KFK-(m-n)F, , 

dh. dfK . dfs 
+~rIKfx-Jf.,]+mhmI~-r-Sm(m-n)~r ] 

+mH,,IdFK dF~l~ 
dr _]J (A9) 

where K =  re+n, J= Im-nl and s in(m-n)  is the sine of 
( m  - n ) .  


